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Anthropogenic climate change is predicted to cause many 
extinctions worldwide1. Although species endemic to islands 
or archipelagos have high conservation value and are vulner-
able to human impacts2,3, there has been no global analysis 
of climate-driven extinction risk focused on island endemics. 
Here, we use conifers as a model system to assess extinc-
tion risk among island endemics under climate projections 
for 2070. We employ the emerging technique of combining 
native and non-native occurrence data to model climatic con-
ditions under which each species can sustain a population4–7 
and also incorporate horticultural data to model the broader 
range of conditions that allow short-term survival. Our pro-
jections indicate that some species will retain suitable cli-
matic conditions, some will experience conditions completely 
precluding survival and others will experience intermediate-
risk conditions that lead to population decline and eventual 
extinction. Based on different climate change models, we 
report island size thresholds of 400 to 20,000 km2, below 
which extinction risks increase. These patterns are driven by 
correlations among island area and the breadth of species’ 
realized, fundamental and tolerance niches. Notably, realized 
and fundamental niche breadth are positively correlated. Our 
results highlight management interventions needed to pro-
tect species from climate-driven extinction across islands of 
different sizes.

The severity of climate-driven extinction risk is uncertain for 
island endemics. They have limited ranges and dispersal opportu-
nities, which could confer high risk, particularly on small islands8. 
Indeed, some island endemics appear seriously threatened (see, for 
example, Ferreira et al.9) and if future conditions fall beyond those 
currently present on a given island, the extinction threat could 
intensify10. However, early species distribution modelling research 
demonstrated the importance of investigating species’ ability to 
thrive in conditions beyond those reflected by their native distribu-
tions (reviewed by Booth11). Later studies confirm that habitability 
of conditions outside those experienced in the native range, termed 
niche disequilibrium, is widespread6,11–14, indicating that species 
may be more resilient to climate change than their native ranges 
suggest. Intriguingly, a global analysis of herpetofauna showed that 
island endemics exhibit especially strong disequilibrium15, which 
may have helped them persist through Pleistocene climate swings. 
Additionally, recent work suggests species inhabiting narrow cli-
matic conditions in their native ranges exhibit the greatest niche 
disequilibrium7,16, which could lessen risk for small-island endem-
ics, since small-ranged species have narrow niches17. However, it is 
unclear whether island endemics exhibit sufficient niche disequilib-
rium to withstand predicted warming.

Given the evidence for climatic niche disequilibrium, Sax et al.4 
suggest that assessments of climate-driven extinction risk should 
consider ‘niche syndromes’, that is, the size and positioning of three 
nested components of a species’ niche, which they define as the 
present conditions in the native range (realized niche), the broader 
range of conditions under which a species could sustain a popula-
tion (fundamental niche) and the even broader range of conditions 
under which some individuals survive but reproductive rates are 
insufficient to sustain populations (tolerance niche). Fundamental 
and tolerance niches are important for island endemics, because 
when the climate of a species’ native island shifts beyond the realized 
niche the new conditions could still overlap the fundamental niche, 
allowing persistence, or the tolerance niche, triggering gradual 
attrition as death rates overtake recruitment rates4. Unfortunately, 
fundamental and tolerance niches are difficult to quantify because 
species’ realized niches underrepresent them by unknown 
amounts5,16,18. No study has quantified all three niche components, 
although some have examined realized and fundamental15,18 or real-
ized and tolerance5, or lumped fundamental and tolerance niches6. 
Together, these studies highlight promising techniques that could be 
combined to quantify species’ full niche syndromes, including fun-
damental and tolerance niches4. For naturalized species, research-
ers can estimate the fundamental niche by circumscribing the range 
of climatic conditions under which each species has self-sustaining 
populations, both native and non-native. For plants grown horticul-
turally, researchers can estimate the tolerance niche by circumscrib-
ing the set of conditions under which mature individuals survive 
unassisted, but reproduction is insufficient to sustain a population. 
If all three niche components are estimated, these estimates could 
be compared with future climate projections to improve assess-
ments of climate-driven extinction risk.

Conifers are an ideal system for evaluating climate-driven 
extinction risk among island endemics due to their diversity (157 
island endemics globally19), horticultural popularity, propensity for 
naturalization and strong representation in occurrence databases. 
Conifers are widely planted and many are naturalized20, affording 
valuable opportunities to quantify their fundamental and tolerance 
niches. Furthermore, their native and non-native distributions are 
well documented19,20, facilitating thorough sampling.

Here, we evaluate climate-driven extinction risk among island 
endemic conifers by modelling their realized, fundamental and 
tolerance niches from native, naturalized and horticultural occur-
rences, and determining whether predicted climate conditions 
in 2070 coincide with species’ estimated niches. We also analyse  
relationships among niche breadth, island size and available  
climate space to disentangle the drivers of extinction and advance 
niche theory.
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Native and non-native occurrence data were gathered from 
online herbaria and primary literature. Data were obtained for 
55 species endemic to 14 islands and archipelagos worldwide (see 
Methods). Of these species, eight have naturalized populations. 
We built niche models using CHELSA climate data21. Focusing on 
variables of known importance to our study taxa (sensu Petitpierre 
et  al.22), we considered mean temperature of warmest quarter, 
mean temperature of coldest quarter, mean annual precipitation 
and precipitation seasonality. Using a principal component analy-
sis calibrated to global climate, we constructed a two-dimensional 
climate space capturing 84.5% of global variation (Supplementary 
Fig. 1). For each species, we estimated realized and tolerance niches 
by plotting relevant occurrence data (see Methods) in this climate 
space and circumscribing minimum convex polygons (MCPs). 
We estimated fundamental niches in the same way for the eight 
naturalized species. Each island’s present and predicted climate 
spaces were also defined using MCPs. Climate forecasts for 2070 
were downloaded from CHELSA using four CMIP5 models (see 
Methods). We considered three future scenarios, listed here in 
increasing severity of climate change: the ensemble mean of all four 
models under Representative Concentration Pathway (RCP)2.6, 
the RCP8.5 ensemble mean and, for each species, the individual 
model that generates the least overlap between the species’ fun-
damental niche (when available; otherwise we used the realized 
niche) and the projected climate of the native island under RCP8.5 
(see Methods).

Niche syndromes and future predictions for our study species fall 
into three categories. Some species have large realized, fundamen-
tal and tolerance niches and are predicted to stay within their fun-
damental niches (for example Pinus canariensis; Fig. 1a,b). Others 
have smaller realized and fundamental niches but large tolerance 
niches and are predicted to be outside their fundamental niches but 
within their tolerance niches (for example Araucaria heterophylla; 

Fig. 1c,d). A third set of species has small realized and fundamental 
niches but also smaller tolerance niches, and they are predicted to 
be outside even their tolerance niches under some scenarios (for 
example Juniperus bermudiana; Fig. 1e,f). Supplementary Fig. 2 
shows plots of all other study species. All except Lagarostrobos 
franklinii exhibit niche disequilibrium (Supplementary Fig. 2).

The proportion of species falling into each category above 
depends on the future climate scenario, with more species outside 
their fundamental and tolerance niches under more severe sce-
narios. By 2070, 3.6–23.6% of the conifer species we studied are 
predicted to be outside their fundamental niches (Supplementary 
Table 1). The severity of the climate change scenario also informs 
the likelihood of falling outside the tolerance niche, with none of 
our conifer species in this category under the least severe scenario, 
only one under the intermediate scenario and 20% under the most 
severe scenario (Supplementary Table 1). With one exception (see 
Supplementary methods), the predicted climates of the 47 species 
that lack fundamental niche estimates all fall within the realized 
niche or outside the tolerance niche (Supplementary Fig. 2), mak-
ing fundamental niche estimates unnecessary for predicting these 
species’ fates (see Methods).

Island area predicts whether a species will remain in its fun-
damental niche. When logistic regression was used to model the 
proportion of species on a given island expected to remain in their 
fundamental niches (Fig. 2; for all regressions, n = 55, McFadden’s 
pseudo-R2 ranges from 0.53 to 1.00 and AIC evidence ratio [‘ER’; 
see Methods] > 1,900/1), we found that the point at which half 
an island’s species are predicted to be outside their fundamental 
niches—that is, any given species on an island is equally likely to be 
outside or inside its fundamental niche—corresponds with an island 
size threshold that varies with severity of climate change: 400 km2 
(RCP2.6), 3,000 km2 (RCP8.5 ensemble mean) and 20,000 km2 
(RCP8.5 individual model).
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Fig. 1 | Occurrence data and niche models for three exemplar species. a–f, The species plotted are P. canariensis—Canary Islands (a,b), A. heterophylla—
Norfolk Island (c,d) and J. bermudiana—Bermuda (e,f). Occurrences (and corresponding niche space) are classified as native (black, corresponding to the 
realized niche), naturalized (purple, corresponding to the fundamental niche) or non-naturalized but climatically tolerated (orange, corresponding to the 
tolerance niche). Climate space available on islands is shown with polygon outlines for current conditions (black), as well as for 2070 under RCP2.6 (blue), 
RCP8.5 (red) and the most severe individual model results for RCP8.5 (dashed red). Note that under all scenarios, P. canariensis retains fundamental niche 
space on its native island, whereas A. heterophylla and J. bermudiana are excluded from their fundamental niches, with A. heterophylla retaining tolerance 
niche space under all scenarios and J. bermudiana losing all overlap with its tolerance niche under the most severe scenario.
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The strong correlation we found between island area and the 
predicted fates of island endemics is driven by positive relationships 
among the breadths of the three niche components, island area and 
available climate space (Fig. 3). These findings reinforce prior work 
reporting a positive relationship between niche breadth and range 
size17,23, a factor related to island size. We also corroborate previous 
studies7,16 showing that species with small realized niches exhibit 
the greatest niche disequilibrium between realized and fundamen-
tal niches (Supplementary Fig. 3; n = 8, R2 = 0.86, AICc ER > 180/1). 
However, our results add a new caveat: species with smaller realized 
niches still have smaller fundamental niches in spite of their high 
niche disequilibrium (Fig. 3a; n = 8; R2 = 0.89 and 0.74 for realized 
and fundamental; AICc ER > 400/1 for both; slopes significantly 
different at P < 0.001). Since species with small realized and fun-
damental niches are found on small islands (Fig. 3a,b; for realized 
niches in Fig. 3b, n = 55; R2 = 0.44 and AIC ER > 2,500,000/1), which 
offer a limited range of climatic conditions (Fig. 3c; n = 14; R2 = 0.86; 
AICc ER > 100,000/1), small-island endemics are especially likely 
to be forced out of their fundamental niches when climate shifts 

(Fig. 2). This finding echoes earlier reports suggesting that narrow-
niched species are most threatened by climate change24. In contrast, 
our tolerance niche estimates are not strongly correlated with island 
size, although we found a non-significant positive trend (Fig. 3a,b; 
AICc and AIC do not favour slope models). Because all observed 
tolerance niches are relatively large, few species are outside their tol-
erance niches under most 2070 scenarios (Supplementary Table 1).

Although our characterizations of fundamental and tolerance 
niches represent minimum estimates, they retain important pre-
dictive value. Fundamental niche breadth is uncorrelated with the 
number of naturalized occurrences used to generate the estimates, 
indicating that if we had more data, our estimates would not be larger 
(Supplementary Fig. 4a). This finding suggests that even if some 
occurrences we classified in the tolerance niche eventually (with 
more time since introduction) prove to be within the fundamental 
niche, our fundamental niche estimates would not change apprecia-
bly. Additionally, the positive correlation we found between realized 
and fundamental niche breadth is robust to randomized resampling 
of naturalized occurrence data (Fig. 3d; n = 8, slope for real data is 
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Fig. 2 | island size and climate change severity determine the proportion of species remaining within their fundamental niches, as well as management 
needed to avoid climate-driven extinction. Islands are shown as circles (scaled by number of species studied from each island) positioned with logistic 
regressions under each of three climate change scenarios for 2070: RCP2.6 (solid blue circles and curve), RCP8.5 (solid red circles and curve) and the 
most severe individual model results for RCP8.5 (red circular outlines and dashed red curve). For each island, the blue circles are scaled to be smallest, 
the solid red to be intermediate and the red outlines largest, so that when all three future scenarios yield the same prediction for a given island, all three 
points can be visible. A grey box around a circle indicates that at least one species from the given island is projected to be outside its tolerance niche. 
The species accounts describe three possible future fates. Credit: Photos are from https://www.flickr.com (José Mesa Acosta (P. canariensis), John Tann 
(A. heterophylla) and Forest and Kim Starr (J. bermudiana)). All photos are licensed under Creative Commons (https://creativecommons.org/licenses/
by/2.0/) and have been cropped but are otherwise unaltered from their original forms.
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greater than 99.6% of slopes for random scenarios, R2 = 0.92, AIC 
ER > 1,700/1; see Methods), indicating that the patterns we found 
for the fundamental niche are unlikely to be artefacts of sampling 
bias. In contrast, estimated tolerance niche breadth is positively 
correlated with the number of non-native occurrences used for 
each species, indicating that if we had more data, our tolerance 
niche estimates would probably be larger (Supplementary Fig. 4b;  
n = 55, R2 = 0.23, AIC ER > 500/1). Consequently, we have high con-
fidence that species predicted to remain in their tolerance niches 
will do so, but less confidence in cases where species are predicted 
to fall outside their tolerance niches.

Our results highlight the urgent threat of climate-driven extinc-
tion for endemic species on small islands, as well as opportunities for 
impactful conservation management. Due to the relationships we 
have found among island characteristics and niche breadth (some 
previously unreported; see above), climate change is predicted to 
force small-island endemics outside their fundamental niches by 
2070. Once these species are outside their fundamental niches, death 

rates will exceed reproductive rates, imposing a climate-driven 
extinction debt25 paid by population attrition. Although attrition 
could take centuries for long-lived taxa like conifers, extinction is 
likely without intervention. If other vascular plants behave simi-
larly, a substantial portion of global plant diversity will disappear, 
particularly from small islands. For example, under the RCP8.5 
ensemble mean scenario, a small island like Mauritius (1,865 km2), 
with 287 endemic vascular plant species26, would be expected to lose 
199 by attrition. While some species might evolve quickly enough 
to keep pace with climate change27, those with longer life cycles, like 
conifers, seem unlikely to do so28. Moreover, species predicted to 
remain in their fundamental niches may still struggle, as climate 
change could exacerbate negative biotic interactions—for example, 
North American forests are suffering from climate-driven range 
expansion of the southern pine beetle29. Non-climatic threats like 
habitat modification could also make more areas unsuitable. On 
the other hand, islands may contain micro-refugia, which retain 
favourable climatic conditions amidst larger regional shifts30. Given 
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Fig. 3 | Correlations among island area, species’ realized and fundamental niche breadth and total available climate space. a–c, Continuous lines 
represent linear regression models favoured over intercept-only alternatives by AIC or AICc evidence ratios and dotted lines represent non-favoured 
regression models. a,b, Regressions fit island size against the breadth of individual species’ realized (black), fundamental (purple) and tolerance (orange) 
niches. Circles show the mean among species on an island, with circle size scaled by number of species. a, Relationships among eight species that have 
fundamental niche estimates. b, Relationships among all 55 study species. The x and y coordinates of circles have been jittered to improve visibility.  
c, Breadth of climatic conditions currently occurring island-wide for all islands studied. d, The linear regression slope for estimated fundamental niche 
breadth versus estimated realized niche breadth is steeper than expected by chance. Red points represent the real data, and the red trend line represents a 
linear model fitted to the real data. The grey lines represent linear models for 1,000 simulated datasets (points not shown), in which each species’ realized 
niche model was built from the real data, and each fundamental niche model was built by adding seven randomly assigned locations.
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these possibilities, targetted conservation will be essential for avert-
ing climate-driven extinction. Areas predicted to fall within species’ 
realized niches could take top conservation priority, so that existing 
populations can be protected and expanded. Areas predicted to fall 
within the fundamental niche could take next priority, with man-
agers seeking and protecting micro-refugia. For species predicted 
to fall within only their tolerance niches, conservation measures 
could aid recruitment of offspring. Some species may persist only 
in a semi-wild state; nonetheless, helping island endemics endure 
climate change could pay dividends for global biodiversity.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41558-019-0530-9.
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methods
Species occurrence data. Among the 157 species of conifers that are endemic 
to islands globally, we selected all species (55 in total) for which we could obtain 
verified occurrence data in both the native and non-native ranges. Verified data 
sources included herbaria, the primary literature and communications with 
botanical experts (see below).

Native occurrence records were gathered primarily from the Conifer 
Database19,31. This database has been curated to reflect as robustly as possible the 
full native distributions of conifer species. The Conifer Database yielded 2,152 
native occurrences for our 55 study species, or approximately 39 occurrences per 
species (Supplementary Table 2).

An additional 88 native records for 9 underrepresented native species 
(approximately 10 per species), along with all 418 non-native records across all 55 
species (approximately 8 per species; Supplementary Table 2), came from a primary 
literature search, as well as searches of the following online herbaria and consortia: 
the Southeast Regional Network of Expertise and Collections32, the Consortium 
of Northeast Herbaria33, the Consortium of Pacific Northwest Herbaria34, the 
New York Botanical Garden35, the Smithsonian National Museum of Natural 
History36, Tropicos37, the Harvard University Herbarium38, the Consortium of 
California Herbaria39, the University of Michigan Herbarium40, the Australasian 
Virtual Herbarium41, the Allan Herbarium42, the Auckland Museum43, the National 
Forestry Herbarium44, the Botanical Database of Southern Africa45, Kew46, the 
Royal Botanic Garden Edinburgh47, the French Muséum National d’Histoire 
Naturelle48 and the Swedish Naturhistoriska Riksmuseet49. Full citations for 
primary literature sources are included in the References50–76. These sources are 
identified in Supplementary Note 1. Although the Global Biodiversity Information 
Facility (GBIF) is a valuable repository for species occurrence data, a large 
proportion of these data are not suitable for our purposes and thus would have had 
to be filtered out during our data collection process (see below), which is highly 
labour-intensive. Consequently, we opted to focus on the more specific sources 
listed above. Additionally, some of our sources do not contribute to GBIF, and thus 
by querying them directly we were able to find additional data that would not have 
otherwise been available.

Occurrences were only counted as naturalized, and thus used in fundamental 
niche models, if there was clear evidence of a self-sustaining population—that is, a 
wild population in which sufficient reproduction occurs to sustain the population 
without human aid. For example, one record of Pinus canariensis was used in the 
fundamental niche model because the specimen remarks include ‘Abundantly 
naturalized (hundreds of plants) in road reserve and adjoining plantation on farm 
from which naturalized’, demonstrating that the species is reproducing regularly 
beyond its planted origin. Occurrences lacking clear evidence of naturalization 
were not used to estimate the fundamental niche, but were instead incorporated 
into tolerance niche models whenever we could confirm that at least one adult 
individual was surviving without irrigation or other human assistance. These 
confirmations of occurrences indicating the tolerance niche were made in 
two ways. First, for some specimens, there was evidence of some unassisted 
reproduction, but recruitment was insufficient to demonstrate with certainty  
that a fully wild population could be sustained. For example, one record of  
A. heterophylla was used in the tolerance niche model but not the fundamental 
niche model because the specimen remarks include ‘Seedlings and saplings 
common along an old road leading to a disused water tower above sugar refinery. 
A stand of adult trees occurs nearby’, indicating that unassisted reproduction is 
occurring, but has not exceeded one generation beyond the parent generation, 
which was likely to have been planted. Second, in other cases, cultivated specimens 
were counted whenever we could determine, through personal communication 
with collectors and/or horticulturalists, that irrigation or any other human 
assistance had ceased after the sapling stage. Personal communication was used 
for 248 specimens, including at least one of each species. In general, horticultural 
data must be interpreted with caution, since horticulturalists sometimes select 
microsites to optimize growing conditions, thereby potentially limiting the 
effectiveness of coarse-scale interpolated climate estimates for capturing the 
conditions actually experienced by individual trees11.

Niche modelling. We characterized the niche space occupied by each species 
using MCPs. This approach is often used in characterising niche space13,77 and 
is particularly useful when species’ occurrence density might be driven by 
variation in collection effort, as opposed to variation in environmental suitability. 
In contrast, kernel-smoother estimates are particularly useful when density of 
occurrences reflects a species’ true tolerances78, but we did not use this approach 
here because results can be strongly swayed when collection effort is variable79—as 
is undoubtedly the case across the many regions of the world where island endemic 
conifers are native or naturalized.

We were able to determine the predicted climate niche status of all 55 species 
studied under all three 2070 scenarios—with one exception (see Supplementary 
methods)—because, although we lack fundamental niche estimates for most 
species, predictions for these species tend to be either within the realized 
niche or outside the tolerance niche (Supplementary Fig. 2). Due to the nested 
configuration of the three niche components, any species inside its realized niche 
is also inside the other two by default. Similarly, any species outside its tolerance 

niche is outside the other two by default. These two predicted fates (inside the 
realized niche and outside the tolerance niche) are common because, for many 
species, the climate of the native island is predicted to move in a direction in 
climate space that is mismatched with the orientations of species’ fundamental  
and tolerance niches. In other words, as hypothesized by Booth11, many species 
do not show niche expansion beyond the realized niche in all directions in climate 
space, and the climate of the native island is often predicted to move toward  
(or beyond) these areas of the realized niche that lack expansion—that is, 
areas where the realized, fundamental and tolerance niche edges all coincide 
(Supplementary Fig. 2).

There were idiosyncratic modelling issues for two species, Pinus luchuensis and 
Afrocarpus mannii. We discuss these issues, and how they were addressed, in the 
Supplementary methods.

Climate data and forecasts. Baseline climate data from CHELSA21 are model 
outputs for the period 1979–2013 downscaled to 30-arcsec resolution.

Projections for our four climate variables (mean temperature of warmest 
quarter, mean temperature of coldest quarter, mean annual precipitation and 
precipitation seasonality) in 2070 were downloaded from CHELSA. We used 
CMIP5 models that received the maximum global performance rating from 
McSweeney et al.80: CCSM4, GFDL-CM3, GFDL-ESM2G and GFDL-ESM2M.

In identifying the ‘most severe’ model for 2070 under RCP8.5 for each species, 
we ranked models by the predicted degree of overlap they generated between 
the fundamental niche and the climate of the native island. The less overlap was 
predicted by a given model between the fundamental niche and the island’s climate, 
the higher the model was ranked in severity. Whenever two models predicted the 
same degree of overlap with the fundamental niche, we broke the tie by calculating 
the degree of overlap with the tolerance niche.

Statistical analyses. All analyses were performed in R v.3.4.3 (ref. 81) using 11 
packages in total (details below).

To import and process climate data in raster format from CHELSA21, we used 
several functions in the raster package82, including raster (to read in raster files), 
rasterToPoints (to convert rasters into data frames for further processing and 
statistical analysis), area (to calculate the land area of islands, as well as climatically 
suitable regions within islands), brick (to group raster layers into multi-layer 
objects), overlay (to generate ensemble mean climate predictions from the four 
models), stack (to group climate data layers for principal component analysis) and 
writeRaster (to write raster files for the ensemble mean predictions we generated). 
We used QGIS83 to clip rasters of individual islands from global layers and to link 
georeferenced species occurrences to climate data (in raster form) through  
point sampling.

Our principal component analysis was calibrated to the current global climate 
background, as represented by CHELSA’s data for our four climate variables (mean 
temperature of warmest quarter, mean temperature of coldest quarter, mean annual 
precipitation and precipitation seasonality), using the rasterPCA function in the 
RStoolbox package84. To circumscribe MCPs for species’ niche models, as well as 
individual islands’ climate spaces, we used the mcp function in the adehabitatHR 
package85. We used the gIntersection function in the rgeos package86 to find the 
intersections between species’ niche models and the climate spaces of their  
native islands.

All correlations we report among variables were assessed using linear 
regression (for continuous response variables) or logistic regression (for binary 
response variables), with common-log transformations of predictor and/or 
response variables where appropriate to meet regression assumptions. All variables 
that were log-transformed are labelled as such in the relevant figures.

For each linear or logistic regression model, we computed an AIC or AICc 
ER using the akaike.weights function in the qpcR package87 in order to compare 
against an alternative intercept-only model. AICc was used instead of AIC when 
the ratio of n (the number of observations) to k (the number of predictors) was 
less than 40/1. Thus, since our models have one predictor each, we used AICc for 
all models with n < 40. We computed these values using the AICc function in the 
AICcmodavg package88.

The pR2 function in the pscl package89 was used to compute McFadden’s 
pseudo-R2 values for logistic regression models. We used seemingly unrelated 
regression (SUR) analysis, conducted with the systemfit function in the systemfit 
package90 and the glht function in the multcomp package91, to determine whether 
the regression slopes for fundamental and realized niche breadth were significantly 
different from each other when these variables were plotted against island area  
(see Fig. 3a,b).

In Supplementary Fig. 4b, the point in the bottom left corner could be regarded 
as an outlier. As such, we repeated the regression analysis with and without it. The 
differences in results were negligible. Thus, we report results for the full dataset, 
including the point in question.

In order to eliminate the possibility that species on larger islands have larger 
fundamental niche estimates because they are simply planted more widely, we 
plotted total exotic occurrences (including cultivated occurrences) against island 
area for all species with fundamental niche estimates, confirming that these 
variables are uncorrelated (Supplementary Fig. 5).
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We used the symbol.size function in the simba package to adjust the symbol 
sizes in our figures92. To create the global maps in Fig. 1, we used the map function 
in the maps package93.

Randomized resampling of occurrence data. In order to confirm that the 
positive correlation we found between realized and fundamental niche breadth 
is not an artefact of sampling bias among naturalized occurrences, we resampled 
1,000 times from the overall pool of naturalized occurrences across all species, 
assigning each species a random set of seven occurrences (the mean number 
observed in the real dataset), and reanalysing the relationship between realized 
and fundamental niche breadth for each randomly generated dataset using 
simple linear regression. For example, when we randomly reassigned naturalized 
occurrences to Juniperus bermudiana, its simulated naturalized range included 
seven locations randomly selected from the pool of locations where any species 
in our dataset, not just J. bermudiana, had been recorded as naturalized. We 
compared the slopes of the regression models for the random scenarios (grey 
lines, Fig. 3d) to the regression slope for the real data (red points and line,  
Fig. 3d) to confirm that the observed relationship for the real data is unlikely  
to have arisen by chance.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Some herbaria and consortia we queried for species occurrence data do not allow 
dissemination of their data beyond the user, so we are unable to publish the portion 
of our dataset derived from these online sources. However, these data are publicly 
available for download, so we provide information on where to access data from 
each herbarium and consortium in the references. For full details on herbarium 
consortia, including lists of individual participating herbaria whose data we 
used, see Supplementary Note 2. We also provide in the Supplementary Data a 
version of our species occurrence dataset that contains only the data derived from 
personal communication and our primary literature search. CHELSA climate data 
are publicly available at http://www.chelsa-climate.org and at the Dryad Digital 
Repository at https://doi.org/10.5061/dryad.kd1d4.
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